自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

李响

个人学习&经验分享

  • 博客(49)
  • 资源 (6)
  • 论坛 (1)
  • 收藏
  • 关注

原创 【深度学习】Keras和Tensorflow框架使用区别辨析

【深度学习】Keras和Tensorflow框架使用区别辨析文章目录1 概述2 Keras简介3 Tensorflow简介4 使用tensorflow的几个小例子5 Keras搭建CNN6 tensorflow和keras版本对应关系7 TensorFlow 2.0中的tf.keras和Keras有何区别?为什么以后一定要用tf.keras?1 概述Keras 已经被大规模采用,并与 TensorFlow 集成在一起。这种 TensorFlow + Keras 的组合让你可以:使用

2021-05-31 11:06:28 21

原创 【深度学习】DL下的3D图像和Low-level Vision问题解析

文章目录1 概述1 概述Low-level feature:通常是指图像中的一些小的细节信息,例如边缘(edge),角(corner),颜色(color),像素(pixeles),梯度(gradients)等,这些信息可以通过滤波器、SIFT或HOG获取。high-level feature:是建立在low level feature之上的,可以用于图像中目标或物体形状的识别和检测,具有更丰富的语义信息high-level feature常被人称为是高级的语义信息,他的感觉就像通过环境信息纹理信

2021-05-31 11:06:19 32

原创 【深度学习】模型训练过程可视化思路(可视化工具TensorBoard)

【深度学习】模型训练过程可视化思路(可视化工具TensorBoard)文章目录1 TensorBoard的工作原理2 TensorFlow中生成log文件3 启动TensorBoard,读取log文件4 浏览器中启动TensorBoard5 读取并导出Tensorboard中数据6 图(GRAPH)数据可视化7 补充1 TensorBoard的工作原理在TensorFlow的程序里将相关的events等以log的形式保存,在运行TensorBoard后自动加载log文件并以良好的图表呈

2021-05-31 11:06:12 39

原创 【深度学习】如何从结构出发更好的改进一个神经网络(二)

文章目录1 空洞卷积(dilated convolution)2 PReLU3 LeakyReLU可以解决神经元”死亡“问题4 ResNet345 深度学习网络中backbone6 实验6.1 test_binary_crossentropy_bn_LeakyReLU_lr=0.01, decay=2e-56.2 test_binary_crossentropy_bn_PReLU_lr=0.01, decay=2e-56.3 ![在这里插入图片描述](https://img-blog.csdnimg.cn/

2021-05-31 11:06:04 25

原创 【深度学习】如何从结构出发更好的改进一个神经网络

【深度学习】如何从结构出发更好的改进一个神经网络文章目录1 降采样和升采样2 UNet++模型诞生3 参数多了是导致UNet++比UNet好吗4 一些思路5 改进卷积结构 5.1 转置卷积 5.2 空洞卷积 5.3 Depth-wise Convolution 5.4 MBConv 5.5 高效的Unet 5.6 基于keras的代码实现1 降采样和升采样第一个问题: 降采样对于分割网络到底是不是必须的?问这个问题的原因就是,既然输入和输出都是相同大小的图,为什么要折腾去降采

2021-05-31 11:05:54 28

原创 【深度学习】图像数据集处理常用方法合集(部分基于pytorch)

【深度学习】图像数据集处理常用方法合集(部分基于pytorch)1 图像数据集预处理的目的 1.1 灰度图转化 1.2 高斯滤波去除高斯噪声2 使用双峰法进行图像二值化处理 2.1 图像直方图 2.2 双峰法3 2d数据转nii格式阶段4 Pytorch数据预处理:transforms的使用方法5 其他的transforms处理方法,总结有四大类 5.1 裁剪-Crop 5.2 翻转和旋转——Flip and Rotation 5.3 图像变换 5.4 对transforms操作,

2021-05-31 11:05:44 43

原创 【深度学习】谷歌大脑EfficientNet的工作原理解析

【深度学习】谷歌大脑EfficientNet的工作原理解析文章目录1 知识点准备 1.1 卷积后通道数目是怎么变多的 1.2 EfficientNet2 结构 2.1 方式 2.2 MBConv卷积块 2.3 模型的规模和训练方式3 对比4 MBConv结构1 知识点准备1.1 卷积后通道数目是怎么变多的为什么out_channel会大于in_channel相信初学深度学习的小伙伴会遇到和我一样的问题,在卷积时,我们明明输入通道为 3 的图片(RGB),为什么输出通道会达到6甚

2021-05-27 19:38:13 29

原创 【深度学习】生动分析半监督学习与负相关学习算法

【深度学习】生动分析半监督学习与负相关学习算法文章目录1 半监督学习 1.1 定义 1.2 半监督深度学习 1.3 GAN 1.4 应用2 深度负相关学习算法 2.1 负相关 2.2 通俗解释1 半监督学习1.1 定义目前知道最科学的定义是来自《Introduction to Semi-supervised Learning》,这里只给出一个自我感觉良好的说法,大概就是,在有标签数据+无标签数据混合成的训练数据中使用的机器学习算法吧。一般假设,无标签数据比有标签数据多,甚至多得多

2021-05-27 19:37:57 29

原创 PL/SQL两种case语句写法

--case表达式中的简单caseDECLARE v_num NUMBER :=#v_result VARCHAR2(30);BEGINv_result := MOD(v_num,2);dbms_output.put_line(CASE v_result WHEN 0 THEN 'the number you input is :even' ELSE 'the number you input is :odd'END );--作为

2021-05-26 22:57:39 28

原创 【Java Web开发指南】Spring一些基础问题整理

文章目录1. 请简述文件上传时中文乱码的解决思路(4分),并写出文件上传表单的基本示例代码(4分)2. 请简述如何实现登录验证3. 请简述使用包装 POJO 类型数据绑定时,前端请求的参数名编写必须符合的两种情况(4 分)。4. 请简述 AOP 如何解决传统 OOP 思想可能出现的问题。(4 分)5. Spring 依赖注入通常有哪些实现方式,列举并分别进行说明。6. 请简述 SSM 框架整合思路。(6 分)7. 请简述单个拦截器的执行流程。(6 分)最强知识图谱!学习Java或者全栈开发强烈推荐

2021-05-26 10:41:14 69

原创 【深度学习】利用深度可分离卷积减小计算量及提升网络性能

【深度学习】利用深度可分离卷积减小计算量及提升网络性能文章目录1 深度可分离卷积2 一个深度可分离卷积层的代码示例(keras)3 优势与创新 3.1 Depthwise 过程 3.2 Pointwise 过程4 Mobilenet v15 Xception1 深度可分离卷积深度可分离卷积提出了一种新的思路:对于不同的输入channel采取不同的卷积核进行卷积,它将普通的卷积操作分解为两个过程。深度可分离卷积层对每个channel分别执行卷积,然后通过逐点卷积将这些输出混合。这

2021-05-25 20:53:30 39 1

原创 【Java Web开发指南】Mybatis 中的延迟加载

延迟加载和立即加载延迟加载在真正的使用数据时才发起查询,不用的时候不查。按需加载(懒加载)。立即加载不管用不用,只要一调用方法,马上发起查询。使用方法:<settings> <setting name="lazyLoadingEnabled" value="true"/> <setting name="aggressiveLazyLoading" value="false"/></settings>此外,

2021-05-25 20:16:15 21

原创 【Java Web开发指南】ORM一些基础问题整理

文章目录1最强知识图谱!学习Java或者全栈开发强烈推荐!我说的!1

2021-05-25 20:05:19 73 1

原创 【深度学习】眼底图像之视盘和黄斑分割的探索

【深度学习】眼底图像之视盘和黄斑分割的探索文章目录1 Optic Disc 数据集 1.1 ORIGA-650 1.2 Messidor 1.3 RIM-ONE 1.4 DRION-DB2 Multiscale sequential convolutional neural networks for simultaneous detection of fovea and optic disc3 黄斑分割4 Post-Process Methods5 Patched Based Atten

2021-05-25 10:12:09 83

原创 【响应式Web前端设计】HTML+CSS3 旋转齿轮特效

<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <meta name="viewport" content="width=device-width,initial-scale=1.0"> <title>html5+c

2021-05-25 09:25:35 25

原创 【响应式Web前端设计】子元素absolute定位时父元素有无relative的区别

.father{ width: 200px; height: 200px; background-color: red; margin:0 auto; /*position: relative;*/ } .son{ width: 50px; height: 50px; background-color:

2021-05-25 09:15:47 30

原创 【深度学习】nnU-Net(优秀的前处理和后处理框架)

【深度学习】nnU-Net(优秀的前处理和后处理框架)1 概述2 网络结构3 training部分 3.1 nnUNetTrainer(版本一的训练方法) 3.2 nnUNetTrainerV2(版本二的训练方法)4 前处理5 自适应生成网络结构6 模型选择7 训练8 后处理9 推理10 总结1 概述nnUnet虽然不是新的论文,但是这个框架效果很好。它并没有提出新的网络结构,没有抓人眼球的地方,仅依靠一些技巧,将分割任务进行了大统一,并在很多任务上得到了非常好的成绩上,可以

2021-05-24 16:50:11 29

原创 【深度学习】图像特征提取与通道数问题(基于U型网络)

【深度学习】图像特征提取与通道数问题(基于U型网络)1 医学图像特点2 卷积核与图像特征提取 2.1 卷积 2.2 图像处理 2.3 边缘检测卷积核 2.4 图像锐化卷积核 2.5 高斯滤波3 关于图像三通道和单通道的解释4 pytorch 修改预训练模型(全连接层、单个卷积层、多个卷积层)1 医学图像特点1.图像语义较为简单、结构较为固定。我们做脑的,就用脑CT和脑MRI,做胸片的只用胸片CT,做眼底的只用眼底OCT,都是一个固定成像,而不是全身的。由于本身结构固定和语义信息没有特

2021-05-23 20:00:08 54

原创 【深度学习】U-Net 网络分割多分类医学图像解析

【深度学习】U-Net 网络分割多分类医学图像解析文章目录【深度学习】U-Net 网络分割多分类医学图像解析1 U-Net 多分类2 Keras 利用Unet进行多类分割 2.1 代码实现 2.2 结果3 多分类标签验证4 数据变换代码1 U-Net 多分类Unet图像分割在大多的开源项目中都是针对于二分类,理论来说,对于多分类问题,依旧可行。U-net前半部分作用是特征提取,后半部分是上采样。在一些文献中也把这样的结构叫做编码器-解码器结构。由于此网络整体结构类似于大写的英文

2021-05-23 19:59:41 109

原创 【深度学习】移动翻转瓶颈卷积的实现(mobile inverted bottleneck convolution)

【深度学习】移动翻转瓶颈卷积的实现(mobile inverted bottleneck convolution)文章目录1 MBConv 1.1 Depthwise Convolution 1.2 SE-Net 1.3 EfficientNet-B0网络结构2 卷积层的变体和替代3 MobileNetV31 MBConv移动翻转瓶颈卷积(mobile inverted bottleneck convolution,MBConv),类似于 MobileNetV2 和 MnasNet,由深

2021-05-23 19:59:22 148 3

原创 【深度学习】讲一个深度分离卷积结构和空洞卷积的应用

文章目录1 概述1.1 正常卷积1.2 可分离卷积1 概述深度可分离卷积网络与普通卷积网络深度可分离卷积神经网络是卷积神经网络的一个变种,可以对卷积神经网络进行替代。对于普通的卷积申请网络,如下图左边部分所示,由卷积层,批归一化操作与激活函数构成的。对于深度可分离卷积网络,它是由一个3x3深度可分离的卷积层,批归一化,激活函数,1x1普通卷积层,批归一化,激活函数构成。在卷积神经网络中,将下图左边部分替换为右边部门,那么卷积神经网络就成为了深度可分离卷积网络。对于普通的卷积神经网络,输出通道是和所

2021-05-21 21:15:01 22

原创 【深度学习】像素级分割网络新思路之DeepLabv3+

【深度学习】像素级分割网络新思路之DeepLabv3+1 版本情况2 引言&相关工作3 空洞卷积(Dilated/Atrous Convolution)4 DeepLabv3+5 深度可分离卷积(Depthwise separable convolution) 5.1 逐通道卷积(Depthwise Convolution) 5.2 逐点卷积(Pointwise Convolution)6 实验(Miou)1 版本情况这是在DeepLabV1、2基础上的再扩展;V1 主要是将

2021-05-21 21:14:48 67

原创 【深度学习】眼底图像的视杯和视盘分割解析

【深度学习】眼底图像的视杯和视盘分割解析文章目录1 背景2 概念 2.1 视盘 2.2 视杯3 数据4 医学图像分割-Attention Unet5 注意力机制到底是什么-资源分配给更重要的特征(任务)6 对比7 代码1 背景眼睛是人类视觉感知的重要器官,外界光线通过人眼神经细胞形成视觉信号并传输至大脑。眼球主要包括巩膜(眼白)、虹膜、角膜、晶状体、脉络膜、视网膜和视神经、瞳孔、等部分。眼底图像辅助诊断由于其操作简单、花费低、对人体伤害小等优点己经成为大规模视网膜疾病筛查方式的首选

2021-05-21 21:14:39 151

原创 【深度学习】Squeeze-and-Excitation (SE) 模块优势解读

【深度学习】Squeeze-and-Excitation (SE) 模块优势解读文章目录1 概念辨析—下采样和上采样2 Squeeze-and-Excitation (SE)3 压缩(Squeeze)4 激励(Excitation)5 scale操作6 相乘特征融合7 SE模块的实现8 优势1 概念辨析—下采样和上采样概念上采样(upsampling):又名放大图像、图像插值;主要目的是放大原图像,从而可以显示在更高分辨率的显示设备上;上采样有3种常见的方法:双线性插值(bil

2021-05-21 21:14:30 70

原创 【深度学习】腹部CT的肝脏肿瘤分割的探索

【深度学习】腹部CT的肝脏肿瘤分割的探索文章目录1 颜色翻转2 背景3 U-Net网络4 Modified U-Net (mU-Net)5 数据集6 数据处理及增强7 结果8 基于深度学习的图像分割总结1 颜色翻转原数据集中的标准肝脏和白色的肿瘤,肝脏分割的图片,发现做窗口值等的操作,也是将非目标区域变黑,然后可以突出肝脏(肝脏变成灰白色,当然,还有其他器官更是白色)。于是,我做了一个大胆的实验,将肝脏变成灰色,肿瘤变成白色,肝脏外的区域为黑色。(进行了颜色翻转)2 背景

2021-05-20 20:10:38 83

原创 【深度学习】一个应用—肝脏CT图像自动分割(术前评估)

【深度学习】一个应用—肝脏CT图像自动分割(术前评估)文章目录1 目标2 数据集3 LITS2017 3.1 LiTS数据的预处理 3.2 LiTS数据的读取 3.3 数据增强 3.4 数据存储4 U-Net3d搭建5 结果1 目标分割出CT腹部图像的肝脏区域。2 数据集肝脏和肿瘤分割数据集下载链接LiTS2017:https://competitions.codalab.org/competitions/17094#participate3D-IRCADb 01:htt

2021-05-16 09:03:47 112

原创 【深度学习】深入浅出数字图像处理基础(模型训练的先修课)

【深度学习】深入浅出数字图像处理基础(模型训练的先修课)文章目录1 图像的表示2 图像像素运算3 采样与量化 3.1 采样 3.2 量化 3.3 图像上采样与下采样4 插值算法分类5 什么是池化6 最后一句话1 图像的表示图像数字化之后在计算机中其实就是一个数字矩阵,通常有三种表示形式,灰度图像,彩色图像,二值图像。灰度图像用一个通道来表示,图像的灰度用像素值来表示,数值越大则图片越白。彩色图像常用三个通道来表示,分别是红绿蓝这三个通道,组成的是一个三维向量矩阵。而在计算机中常见

2021-05-15 16:37:52 48

原创 【深度学习】利用神网框架分割病理切片中的癌组织(胃)

【深度学习】利用神网框架分割病理切片中的癌组织(胃)文章目录1 数据描述2 思路3 准备数据4 构建模型5 模型优化6 程序执行7 观察结果1 数据描述初赛选取癌病理切片,为常规 HE 染色,放大倍数 20, 图片大小为 2048×2048 像素,比赛数据为整体切片的部分区域,tif 格式。比赛不允许使用外部数据。初赛选取 100 个病人案例(部分为癌症、部分为非癌症),共计 1000 张病理切片图片,训练集数量 700 张,测试集数量 300 张。病理专家将数据标记(双盲评估+验证

2021-05-13 22:22:56 27

原创 【深度学习】迁移学习方法的妙用(有效提升准确率)

【深度学习】迁移学习方法的妙用(有效提升准确率)文章目录1 一个普通的神经网络 1.1 数据预处理 1.2 分割训练集和测试集合 1.3 搭建模型2 使用ImageNet数据集 2.1 搭建模型 2.2 训练后结果3 快速迁移学习 3.1 搭建特征提取模型并导出特征 3.2 训练全联接分类器4 模型融合1 一个普通的神经网络接下来的内容,我们以 gaggle 上的一个比赛一猫狗大战(htps: / www. Kaggle.com/c/dogs-vs-cats-redux-ke

2021-05-13 22:22:41 115

原创 【Linux入门到精通系列讲解】父子进程同时写文件代码(Wait()调用)

编写一个程序,首先打开一个文件,然后利用fork()创建一个子进程,随后,当父进程运行时先执行write(),父子进程都打印自己和父进程的pid,并且二者都向文件中写入。#include <stdio.h>#include <sys/types.h>#include <unistd.h>#include <sys/stat.h>#include <fcntl.h>#include <unistd.h>#include &

2021-05-13 10:05:40 72

原创 【深度学习】如何更好的Fit一个深度神经网络框架下的模型

【深度学习】如何更好的Fit一个深度神经网络框架下的模型文章目录1 随机梯度下降 1.1 什么是梯度下降 1.2 随机梯度算法2 Momentum3 自适应学习率算法 3.1 AdaGrad 3.2 Adam 3.3 Adam配置参数1 随机梯度下降1.1 什么是梯度下降我们先从一张图来直观解释这个过程。如上图假设这样一个场景:一个人被困在山上,需要从山上下来,但此时山上的浓雾很大,导致可视度很低。因此,下山的路径就无法确定,他必须利用自己周围的信息去找到下山的路径。这个时候,

2021-05-12 19:55:24 17

原创 【Linux入门到精通系列讲解】VFS分区动态绑定和CentOS7分区类型

文章目录1 VFS分区动态绑定2 CentOS7分区类型1 VFS分区动态绑定VFS和ext2文件系统都使用超级块和索引节点来描述和管理系统中的文件,每个安装的文件系统都有一个VFS超级块。2 CentOS7分区类型一个交换(swap)分区。交换分区用来支持虚拟内存。如果你的计算机内存小于16MB,必须创建交换分区。即使你有更多的内存,仍然推荐使用交换分区。交换分区的最小尺寸是你的内存的大小,16MB(两者取大)。交换分区最大可以达到127 MB ,所以创建更大的交换分区是浪费空间。注意,可以

2021-05-12 19:26:36 26

原创 【Linux入门到精通系列讲解】shell中的eval命令

eval命令用法: 当我们在命令行前加上eval时,shell就会在执行命令之前扫描它两次 .eval命令将首先会先扫描命令行进行所有的置换,然后再执行该命令。 该命令适用于那些一次扫描无法实现其功能的变量。该命令对变量进行两次扫描。eval可以用来回显简单的变量:这样和普通的没有加eval关键字的命令的作用一样2.eval也能用来执行含有字符串的命令: 首先我们先来创建一个file文件,在这个文件中输入一些我们想要输出的文本,然后我们将cat file赋给变量m

2021-05-12 17:11:23 22

原创 【Linux入门到精通系列讲解】一些基础问题

文章目录1 简述 Linux 的四个主要的应用方面(要求有详细说明)2 简述 Linux 系统中普通用户执行 root 用户权限命令的方式,并分别给出需满足的条件和操作实例。3 简述 Linux 系统中 shell 脚本中使用的变量类型及其用法举例。4 简述 vi 编辑器的工作模式及其各模式间的切换方法。简述如何进行文本文件中的文本 内容的编辑、查找与替换、复制与粘贴和文件的保存与退出(说明工作模式及命令方法)。5 Linux 系统支持的硬件设备有哪几种类型,并说明如何处理使用?6 简述 Linux 系统中

2021-05-11 22:54:15 43

原创 【深度学习】深度神经网络框架的INPUT PROCESS

【深度学习】深度神经网络框架的INPUT PROCESS文章目录1 概述2 批量生成训练数据 2.1 如何实现 2.2 实验验证 2.3 图片标注并生成训练所需文件3 数据增强4 目标检测中的图像增强1 概述这几年深度学习领域的新进展就是以这个想法为基础产生的。我们可以使用更复杂的深度学习网络,在图片中挖出数以百万计的特征。这时问题也就来了。机器学习过程中是需要一个输入文件的。这个输入文件的行、列分别指代样本名称以及特征名称。如果是进行百万张图片的分类,每个图片都有数以百万计的特征,

2021-05-11 16:46:33 31

原创 【深度学习】深入浅出神经网络框架的模型元件(池化、正则化和反卷积层)

文章目录1 池化层1 池化层

2021-05-11 16:46:25 34

原创 【深度学习】深入浅出神经网络框架的模型元件(常用层和卷积层)

【深度学习】深入浅出神经网络框架的模型元件(常用层和卷积层)文章目录1 常用层 1.1 Dense 1.2 Activation层 1.3 Dropout 1.4 Flatten2 卷积层 2.1 Cov2D 2.2 Cropping2D层 2.3 Cropping3D层 2.4 ZeroPadding2D层1 常用层1.1 Densekeras.layers.Dense(units, activation=None, use_bias=True, kernel_initia

2021-05-11 16:46:17 22

原创 【深度学习】深度神经网络框架的探索(从Regression说起)

【深度学习】深度神经网络框架的探索(从Regression说起)1 从逻辑回归说起2 深度学习框架3 基于反向传播算法的自动求导4 简单深度神经网络框架实现 4.1 数据结构 4.2 计算图组件 4.3 训练模型(部分代码)1 从逻辑回归说起神经网络可以用来模拟回归问题 (regression),例如给下面一组数据,用一条线来对数据进行拟合,并可以预测新输入 x 的输出值。导入模块并创建数据models.Sequential,用来一层一层一层的去建立神经层; layers.Dens

2021-05-11 16:46:06 46

原创 【深度学习】数形结合的图像处理(文末介绍了一种新型网络)

【深度学习】数形结合的图像处理(文末介绍了一种新型网络)文章目录【深度学习】数形结合的图像处理(文末介绍了一种新型网络)前言: OpenCV介绍1 读取图像2 修改图像尺寸3 矩阵操作处理图像 3.1 剪切图像 3.2 二维码转矩阵代码(部分)4 使用Open cv抠图代码(部分)5 EfficientNet 5.1 相关介绍 5.2 如何高效的进行多尺度特征融合(efficient multi-scale feature fusion) 5.3 EfficientDet结构前

2021-05-11 16:45:56 166

原创 【深度学习】卷积神经网络实现图像多分类的探索

文章目录1 cifar10数据集踩坑1 cifar10数据集踩坑CIFAR-10数据集由10个类的60000个32x32彩色图像组成,每个类有6000个图像。有50000个训练图像和10000个测试图像。数据集分为五个训练批次和一个测试批次,每个批次有10000个图像。测试批次包含来自每个类的恰好1000个随机选择的图像。训练批次包含随机顺序的图像,但一些训练批次可能包含来自一个种类的图像比另一个类更多。总的训练批次包含来自每个类的正好5000张图像。以下是数据集中的类,以及来自每个类的10个随机图

2021-05-11 08:41:12 90

2019仓库管理系统课设.rar

仓库管理系统课设 java组件的界面设计 ojdbc6+oracleXE11g+HTML前端界面 h5界面 +课设报告+各种自作图 ER 流程 顺序 用例 流图 体系结构

2019-12-30

basemap依赖库自取.zip

需要的网友自行下载 basemap whl文件对应于我疫情地图的那篇博客 内含有两个whl文件 版本python3.6.X 需要自取

2020-01-30

c选手-竞赛环境须知.doc

C/C++ 选手注意 竞赛统一使用dev-cpp软件。该软件支持ANSI C++ 标准,支持STL类库。 该软件为绿色软件,无需安装,直接点击devcpp.exe可使用

2019-10-28

DeskTopShare.rar

一个全面的桌面计算机和移动设备管理解决方案,用于集中管理企业网络中的服务器、计算机、手机及平板电脑等设备。免费版支持管理25台计算机和25台移动设备! 在PC计算机管理方面,帮助系统管理员自动化安装补丁、部署软件、管理IT资产、管理软件许可、统计软件使用情况、远程控制计算机等等。 在移动终端管理方面,通过对移动设备、移动应用及安全策略的管理,有效保障企业网络和信息安全。

2019-10-28

Git工具64位windows.zip

Git安装包 64位 windows系统 可直接安装使用 Git是一款免费、开源的分布式版本控制系统,用于敏捷高效地处理任何或小或大的项目。如今,越来越多的项目采用 Git 来管理项目开发,可见Git软件学习的重要性

2020-02-08

云端留言板 django实现

【django轻量级框架】云端系统之Django框架实现云端留言板(不用数据库,看不懂你来打我)

2020-03-06

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除