- 博客(124)
- 资源 (6)
- 论坛 (1)
- 收藏
- 关注
原创 类图中聚合和组合
依赖(Dependency)关系是类与类之间的联接。依赖关系表示一个类依赖于另一个类的定义。例如,一个人(Person)可以买车(car)和房子(House),Person类依赖于Car类和House类的定义,因为Person类引用了Car和House。与关联不同的是,Person类里并没有Car和House类型的属性,Car和House的实例是以参量的方式传入到buy()方法中去的。一般而言,依...
2019-12-31 14:52:48
732
原创 UML中类图与对象图的区别
UML中类图与对象图的区别类图对象图类具有3个分栏:名称、属性和操作 对象只有两个分栏:名称和属性在类的名称分栏中只有类名 对象的名称形式为“对象名:类名”,匿名对象的名称形式为“:类名”类的属性分栏定义了所有属性的特征 对象则只定义了属性的当前值,以便用于测试用例或例子中类中列出了操作 对象图中不包括操作,因为对于同属于同一个类的对象而言,其操作是相同的类使用关联连接,关联...
2019-12-31 14:22:43
1630
原创 云服务器(ECS)
云服务器(Elastic Compute Service, ECS)是一种简单高效、安全可靠、处理能力可弹性伸缩的计算服务。其管理方式比物理服务器更简单高效。用户无需提前购买硬件,即可迅速创建或释放任意多台云服务器。云服务器帮助您快速构建更稳定、安全的应用,降低开发运维的难度和整体IT成本,使您能够更专注于核心业务的创新。云服务器的业内名称其实叫做计算单元。所谓计算单元,就是说这个服务器只能算...
2019-12-29 10:31:32
112
原创 JDBC连接oracle连接池问题解决
1.确认端口号相对应。2.确保连接池的最大连接数量。3.连接成功进行查询时,确保在表中插入的数据已经commit。
2019-12-29 10:29:16
372
原创 ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务
原因之一是服务名错误,解决方法:查看tns文件,确定服务名;在相应的连接右键点击编辑连接,修改服务名;
2019-12-27 21:13:45
379
原创 Java AWT
1 用AWT生成图形化用户界面抽象窗口工具包AWT (Abstract Window Toolkit) 是 API为Java 程序提供的建立图形用户界面GUI (Graphics User Interface)工具集,AWT可用于Java的applet和applications中。它支持图形用户界面编程的功能包括: 用户界面组件;事件处理模型;图形和图像工具,包括形状、颜色和字体类;布局管理器,...
2019-12-27 15:30:59
157
原创 Java Swing
1.Swing 以AWT为基础。2.使用eclipse建立Java工程,实现一个Java Swing程序实例。package com.swing.test1;import javax.swing.JFrame;public class SwingTest1 {//Swing 练习1 static final int WIDTH=300; static final int HEIGHT=...
2019-12-27 15:28:59
59
原创 JSP
一、JSP是什么,它有什么作用?Java Server Page,它是用于展示信息操作。为了servlet展示信息的不方便,引入了JSP。JSP本质上也是一个servlet!!!!!!JSP就是在HTML页面中嵌入了java代码。...
2019-12-23 16:17:08
52
原创 在Python中实现SVM分类
输入数据集,分析数据维度,可以看到共有0,1,2,3四个类别。import pandas as pddf=pd.DataFrame({‘math’:[98,78,54,89,24,60,98,44,96,90],‘english’:[92,56,90,57,46,75,76,87,91,88],‘chinese’:[95,69,91,52,60,80,78,81,96,82],‘rank’:[0...
2019-12-22 16:53:08
2103
原创 jdbc oracle thin@localhost 1521 XE
一、jdbc:oracle:thin:@localhost:1521:XEjdbc:表示采用jdbc方式连接数据库oracle:表示连接的是oracle数据库thin:表示连接时采用thin模式(oracle中有两种模式)jdbc:oralce:thin:是一个jni方式的命名@表示地址1521和XE表示端口和数据库名@localhost:1521:orcl整个是一块也就是说是这...
2019-12-21 18:37:02
141
原创 ecilpse连接oracle ojdbc驱动
package keshe;import java.sql.*;public class GetConn {public Connection getConnection() {Connection conn = null;try {Class.forName("oracle.jdbc.driver.OracleDriver"); //加载数据库驱动System.out.printl...
2019-12-21 18:36:17
76
原创 ORACLE 11g 数据库 java jdk版本匹配
Oracle版本是11G这个要取决于你的jdk,如果你的jdk是 JDK 1.4 、1.5用ojdbc5.jar,如果jdk是1.6、1.7、1.8用ojdbc6.jar 。
2019-12-21 18:15:58
1528
原创 Oracle11g与Oracle11gxe有什么区别
XE版的是免费版,有限制的,如数据库大小限制在11G以内,不能多CUP等等。但个人学习用没问题的。
2019-12-21 16:57:03
1899
原创 计算机系统概论
冯•诺依曼计算机的特点是什么?解:冯•诺依曼计算机的特点是:P8 计算机由运算器、控制器、存储器、输入设备、输出设备五大部件组成; 指令和数据以同同等地位存放于存储器内,并可以按地址访问; 指令和数据均用二进制表示; 指令由操作码、地址码两大部分组成,操作码用来表示操作的性质,地址码用来表示操作数在存储器中的位置; 指令在存储器中顺序存放,通常自动顺序取出执行; 机器...
2019-12-21 16:25:06
94
原创 中断隐指令
中断隐指令指CPU响应中断之后,经过某些操作,转去执行中断服务程序的一种操作。中断隐指令并不是指令系统中的一条真正的指令,它没有操作码,所以中断隐指令是一种不允许、也不可能为用户使用的特殊指令。其所完成的操作主要有:(1)保存断点为了保证在中断服务程序执行完毕能正确返回原来的程序,必须将原来程序的断点(即程序计数器(PC)的内容)保存起来。断点可以压入堆栈,也可以存入主存的特定单元中。(2...
2019-12-21 11:08:35
623
原创 解决The server cannot be started because one or more of the ports are invalid.
2019-12-21 09:36:37
11641
原创 eclipse环境下配置tomcat服务器
打开Eclipse,单击“Window”菜单,选择下方的“Preferences”,看是否存在“Server”选项,我目前使用的是eclipse版,不带额外插件,一些使用的Myeclipse集成了J2EE可以忽略此过程。我使用的EclipsePreferences下是没有Server选项,此时需要安装server插件,我的上一篇博客介绍了如何安装server插件,我这里就不详细叙述了,安装了ser...
2019-12-21 09:20:13
49
原创 数据元素和数据项的区别
是:1、数据元素(data element)是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理。有时,一个数据元素可由若干个数据项组成。2、数据元素由数据项组成。在不同的条件下,数据元素又可称为元素、结点、顶点、记录等。数据元素是用一组属性描述定义、标识、表示和允许值的一个数据单元。...
2019-12-20 19:43:55
3009
原创 解决ecilpse插件安装速度变得很慢
’去掉contact all的勾,这个选项会在安装过程中搜索全网进行更新修补,直接导致插件安装速度变得很慢。
2019-12-20 18:23:29
91
1
原创 eclipse没有server选项解决方法
eclipse是是一个开放源代码的、基于Java的可扩展开发平台。就其本身而言,它只是一个框架和一组服务,用于通过插件组件构建开发环境。它使用频率十分高,然而当使用它配置weblogic的时候,经常会发现一个重要的问题就是打开eclipse之后没有了server选项,那么该如何解决这个问题呢? 下面将详细介绍eclipse中servers不见了的解决方法。 找到Help->I...
2019-12-20 18:08:55
83
原创 使用tomcat软件在本地搭建服务器
首先介绍eclipse开发JavaWeb项目需要配置的相关环境,使用tomcat软件在本地搭建服务器,然后再在eclipse环境下配置tomcat:第一步:使用tomcat软件在本地搭建服务器,这个本地的tomcat服务器与eclipse环境下配置tomcat服务器都可以使用,但是只能启动一个,否则会报端口冲突,到时安装好环境会介绍tomcat软件是apache旗下的一个开源项目。软件下载链接...
2019-12-20 17:50:01
124
原创 解决访问http://localhost:8080/需要用户和密码的问题
解决访问tomcat网页需要用户和密码的问题有时候我们访问http://localhost:8080/,会弹出如下框框,需要用户名和密码这个时候大多数是端口号冲突了,打开安装目录—conf—server.xml,修改如下图的端口,把原本的8080修改成自己喜欢的(不与其他服务的端口冲突即可),题主改的是8888...
2019-12-20 17:34:38
1332
原创 Tomcat的账号与密码
打开文件 apache-tomcat——>conf——>tomcat-users.xml,在该文件中可以更改和查看tomcat的账号与密码
2019-12-20 17:32:00
50
原创 简述JavaME,JavaSE,JavaEE
javaME:微型版,应用于移动等JavaSE:标准版,应用于桌面环境JavaEE:企业版,应用于基于Java的应用服务器
2019-12-20 17:12:27
100
原创 总线工作频率和总线时钟频率
总线传送一次数据是由A个时钟周期完成,根据时间花费有:1/总线工作频率=A* 1/总线时钟频率也就是说,总线工作频率=总线时钟频率/A
2019-12-19 16:43:45
3375
原创 【深度学习笔记】ROC曲线 vs Precision-Recall曲线
ROC曲线的优势 ROC曲线有个很好的特性:当测试集中的正负样本的分布变化的时候,ROC曲线能够保持稳定。在实际的数据集中经常会出现类不平衡现象,而且测试数据中的正负样本的分布也可能随着时间变化。下图是ROC曲线和Precision-Recall曲线的对比。其中(a)和©为ROC曲线,(b)和(d)为Precision-Recall曲线。(a)和(b)展示的是分类器在原始测试集(正负样本分布...
2019-12-19 09:47:29
490
1
原创 【深度学习笔记】ROC曲线和PR(Precision-Recall)曲线的联系
在机器学习中,ROC(Receiver Operator Characteristic)曲线被广泛应用于二分类问题中来评估分类器的可信度,但是当处理一些高度不均衡的数据集时,PR曲线能表现出更多的信息,发现更多的问题。1.ROC曲线和PR曲线是如何画出来的?在二分类问题中,分类器将一个实例的分类标记为是或否,这可以用一个混淆矩阵来表示。混淆矩阵有四个分类,如下表:其中,列对应于实例实际所属...
2019-12-19 09:45:29
598
原创 【深度学习笔记】分类指标accuracy,recall,precision等的区别
在机器学习里面做一些分类任务时,经常会使用到一些评价指标,下面就一些常用的指标进行详细的说明。上图表示为一个二分类的混淆矩阵(多分类同理,只需要把不属于当前类的其他类都考虑为负例),表格中的四个参数说明:True Positive(TP):预测为正例,实际为正例False Positive(FP):预测为正例,实际为负例True Negative(TN):预测为负例,实际为负例Fals...
2019-12-19 09:33:48
785
原创 Confusion matrix
模型评估之混淆矩阵(confusion_matrix)TP(True Positive):将正类预测为正类数,真实为0,预测也为0FN(False Negative):将正类预测为负类数,真实为0,预测为1FP(False Positive):将负类预测为正类数, 真实为1,预测为0TN(True Negative):将负类预测为负类数,真实为1,预测也为1混淆矩阵定义及表示含义混淆矩...
2019-12-19 09:31:05
77
原创 Jaccard系数
Jaccard index , 又称为Jaccard相似系数(Jaccard similarity coefficient)用于比较有限样本集之间的相似性与差异性。Jaccard系数值越大,样本相似度越高。
2019-12-19 09:28:28
319
原创 【深度学习笔记】F1-Score
F1-Score又称为平衡F分数(balanced F Score),他被定义为精准率和召回率的调和平均数。F1-Score指标综合了Precision与Recall的产出的结果。F1-Score的取值范围从0到1的,1代表模型的输出最好,0代表模型的输出结果最差。更一般的,我们定义Fβ分数为除了F1分数之外,F2分数和F0.5分数在统计学中也得到大量的应用。其中,F2分数中,召回率的权...
2019-12-19 09:26:09
4242
1
原创 【深度学习笔记】Precision、Recall
Precisionprecision=TP/(TP+FP)真阳对预测为阳的占比。Recallrecall=TP/(TP+FN)真阳对真实为阳的占比。
2019-12-19 09:23:19
316
1
原创 机器学习和统计中的AUC
首先,在试图弄懂AUC和ROC曲线之前,一定,一定要彻底理解混淆矩阵的定义!!!混淆矩阵中有着Positive、Negative、True、False的概念,其意义如下:称预测类别为1的为Positive(阳性),预测类别为0的为Negative(阴性)。预测正确的为True(真),预测错误的为False(伪)。对上述概念进行组合,就产生了如下的混淆矩阵:然后,由此引出True Positiv...
2019-12-19 09:18:06
110
原创 【深度学习笔记】AUC(Area under Curve Roc曲线下面积)
一、roc曲线1、roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性。横轴:负正类率(false postive rate FPR)特异度,划分实例中所有负例占所有负例的比例;(1-Specificity)纵轴:真正类率(true postive rate TPR)灵敏度,Sensitivity(正类...
2019-12-19 09:11:35
493
c选手-竞赛环境须知.doc
2019-10-28
DeskTopShare.rar
2019-10-28
Git工具64位windows.zip
2020-02-08
2019仓库管理系统课设.rar
2019-12-30
求助! 命令行执行python读取不了配置文件等等的信息!急!
发表于 2020-03-28 最后回复 2020-03-28
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人 TA的粉丝