【深度学习】对抗扰动、垃圾/钓鱼邮件自动分类和UEBA

【深度学习】对抗扰动、垃圾/钓鱼邮件自动分类和UEBA

文章目录
1 数据集
2 清洗数据集
3 GloVe + LSTM
4 GloVe词向量模型
5 搭建网络整体结构
6 训练模型并验证
7 对抗扰动
8 数据安全智能守护神UEBA(用户实际行为分析)

1 数据集

总的数据集一共有4458条数据,将按照8:2进行划分训练集和验证集。通过分析发现,其中pam的数量有3866条,占数据集的大多数,可以考虑不平衡样本采样进行训练。

数据集的格式如图所示,有三列分别是ID,Label(pam、spam),Email
在这里插入图片描述
Spam表示垃圾邮件。

2 清洗数据集

在实际中清洗数据也是非常必要的,套用一句俗话“数据决定了模型的上限”。常用的清洗数据的方法有:去掉停用词、去掉URL、去掉HT

李响Superb CSDN认证博客专家 机器学习 TensorFlow 图像处理
成为一名优秀的算法工程师⬆️ ,
目前还在读软件工程,
AI攻防、算法和深度学习方向,
微博同名❤️ :李响Superb,
(记得关注,有问题微博私信!)
我们一起努力呀!
相关推荐
©️2020 CSDN 皮肤主题: 猿与汪的秘密 设计师:白松林 返回首页
实付 9.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值