【深度学习】孪生网络(Siamese Network)的模式和训练过程

【深度学习】孪生网络(Siamese Network)的模式和训练过程

文章目录
1 概述
2 Siamese network 孪生神经网络
3 孪生神经网络和伪孪生神经网络分别适用于什么场景呢?
4 细节
5 网络训练
6 人脸检测—Siamese Network

1 概述

孪生神经网络(Siamese neural network),又名双生神经网络,是基于两个人工神经网络建立的耦合构架。孪生神经网络以两个样本为输入,其两个子网络各自接收一个输入,输出其嵌入高维度空间的表征,通过计算两个表征的距离,例如欧式距离,以比较两个样本的相似程度。

狭义的孪生神经网络由两个结构相同,且权重共享的神经网络拼接而成广义的孪生神经网络,或伪孪生神经网络(pseudo-siamese network),可由任意两个神经网拼接而成。孪生神经网络通常具有深度结构,可由卷积神经网络、循环神经网络等组成,其权重可以由能量函数或分类损失优化。

孪生网络用于处理两个输入"比较类似"的情况。比如

李响Superb CSDN认证博客专家 机器学习 TensorFlow 图像处理
成为一名优秀的算法工程师⬆️ ,
目前还在读软件工程,
AI攻防、算法和深度学习方向,
微博同名❤️ :李响Superb,
(记得关注,有问题微博私信!)
我们一起努力呀!
相关推荐
©️2020 CSDN 皮肤主题: 猿与汪的秘密 设计师:白松林 返回首页
实付 9.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值