【深度学习】深入浅出对抗机器学习(AI攻防)

【深度学习】深入浅出对抗机器学习(AI攻防)

文章目录
1 Attack ML Model概述
2 基本概念
3 攻击分类
4 经典的对抗性样本生成算法
5 经典的对抗防御方法
6 人工智能安全现状概析

1 Attack ML Model概述

随着AI时代机器学习模型在实际业务系统中愈发无处不在,模型的安全性也变得日渐重要。机器学习模型很可以会遭到恶意攻击,比较直接就能想到的如:人脸识别模型的攻击。训练出具有对抗性的机器学习模型,在业务系统存在着越来越重要的实际意义。

机器学习模型攻击要做的事情如下图所示:
在这里插入图片描述
假设我们有一个Network用来做动物的图像识别。我们输入一张如图所示的图片, Network预测为“Tiger Cat”。机器学习模型攻击是在图片上加上一个微小的噪音Δ x,使得图片看起来还是一只“Tiger Cat”&

李响Superb CSDN认证博客专家 机器学习 TensorFlow 图像处理
成为一名优秀的算法工程师⬆️ ,
目前还在读软件工程,
AI攻防、算法和深度学习方向,
微博同名❤️ :李响Superb,
(记得关注,有问题微博私信!)
我们一起努力呀!
相关推荐
©️2020 CSDN 皮肤主题: 猿与汪的秘密 设计师:白松林 返回首页
实付 9.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值