【深度学习】图像数据集处理常用方法合集(部分基于pytorch)

【深度学习】图像数据集处理常用方法合集(部分基于pytorch)

1 图像数据集预处理的目的
	1.1 灰度图转化
	1.2 高斯滤波去除高斯噪声
2 使用双峰法进行图像二值化处理
	2.1 图像直方图
	2.2 双峰法
3 2d数据转nii格式阶段
4 Pytorch数据预处理:transforms的使用方法
5 其他的transforms处理方法,总结有四大类
	5.1 裁剪-Crop
	5.2 翻转和旋转——Flip and Rotation
	5.3 图像变换
	5.4 对transforms操作,使数据增强更灵活

1 图像数据集预处理的目的

图像预处理的主要目的是消除图像中无关的信息&

李响Superb CSDN认证博客专家 机器学习 TensorFlow 图像处理
成为一名优秀的算法工程师⬆️ ,
目前还在读软件工程,
AI攻防、算法和深度学习方向,
微博同名❤️ :李响Superb,
(记得关注,有问题微博私信!)
我们一起努力呀!
<p> <b><span style="background-color:#FFE500;">【超实用课程内容】</span></b> </p> <ul> <li> <span style="font-size:14px;"><span>深度学习图像处理领域的发</span><span>展过程;</span></span> </li> <li> <span style="font-size:14px;"><span>解析经典的卷积神经网络;</span></span> </li> <li> <span style="font-size:14px;"><span>垃</span><span>圾分类实战。本课程将使用Pytorch深度学习框架进行实战,并在ubuntu系统上</span><span>进行演示,包括:不同标注文件下的数据集读取、编写卷积神经网络、训练垃圾分类数据集、测试训练网络模型、网络可视化、性能评估等。</span></span> </li> </ul> <p style="font-family:Helvetica;color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="color:#000000;background-color:#FFE500;"><b><br /> </b></span> </p> <p style="font-family:Helvetica;color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="color:#000000;background-color:#FFE500;"><b>【课程如何观看?】</b></span> </p> <p style="font-family:Helvetica;color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="color:#000000;">PC端:<a href="https://edu.csdn.net/course/detail/26277"><span id="__kindeditor_bookmark_start_21__"></span></a><a href="https://edu.csdn.net/course/detail/26295">https://edu.csdn.net/course/detail/26295</a></span> </p> <p style="font-family:Helvetica;color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="color:#000000;">移动端:CSDN 学院APP(注意不是CSDN APP哦)</span> </p> <p style="font-family:Helvetica;color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <br /> </p> <p class="ql-long-24357476" style="font-family:"color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="line-height:24px;background-color:#FFE500;font-size:14px;"><span style="line-height:24px;"><strong>【学员专享增值服务】</strong></span></span> </p> <p class="ql-long-24357476" style="font-family:"color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="line-height:24px;font-size:14px;"><b>源码开放</b></span> </p> <p class="ql-long-24357476" style="font-family:"color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="line-height:24px;font-size:14px;">课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化</span> </p> <p class="ql-long-24357476" style="font-family:"color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="line-height:24px;"><span style="font-size:14px;">下载方式:电脑登录<span style="color:#000000;"><a href="https://edu.csdn.net/course/detail/26277"></a><a href="https://edu.csdn.net/course/detail/26295">https://edu.csdn.net/course/detail/26295</a></span></span><span style="font-size:14px;">,点击右下方</span><span style="line-height:24px;background-color:#CCCCCC;font-size:14px;">课程资料、代码等打包下载</span></span> </p> <p> <br /> </p> <p> <br /> </p>
相关推荐
<p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <span style="color:#E53333;"><strong>【课程介绍】</strong></span>  </p> <p style="text-align:left;">      Pytorch项目实战 垃圾分类 课程从实战的角度出发,基于真实数据集与实际业务需求,结合当下最新话题-垃圾分类问题为实际业务出发点,介绍最前沿的深度学习解决方案。 </p> <p style="text-align:left;">     从0到1讲解如何场景业务分析、进行数据处理,模型训练与调优,最后进行测试与结果展示分析。全程实战操作,以最接地气的方式详解每一步流程与解决方案。 </p> <p style="text-align:left;">     课程结合当下深度学习热门领域,尤其是基于facebook 开源分类神器ResNext101网络架构,对网络架构进行调整,以计算机视觉为核心讲解各大网络的应用于实战方法,适合快速入门与进阶提升。 </p> <p style="text-align:left;"> <strong><span style="color:#E53333;">【课程要求】</span></strong> </p> <p style="text-align:left;"> (1)开发环境:python版本:Python3.7+;<span style="color:#E53333;"> torch 版本:1.2.0+; torchvision版本:0.4.0+</span> </p> <p style="text-align:left;"> (2)开发工具:Pycharm; </p> <p style="text-align:left;"> (3)学员基础:需要一定的Python基础,及深度学习基础; </p> <p style="text-align:left;"> (4)学员收货:掌握最新科技图像分类关键技术; </p> <p style="text-align:left;"> (5)学员资料:内含完整程序源码和数据集; </p> <p style="text-align:left;"> (6)课程亮点:专题技术,完整案例,全程实战操作,徒手撸代码 </p> <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <span style="color:#E53333;"><strong>【课程特色】</strong></span> </p> 阵容强大 <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> 讲师一直从事与一线项目开发,高级算法专家,一直从事于图像、NLP、个性化推荐系统热门技术领域。 </p> <p style="text-align:left;"> 仅跟前沿 </p> <p style="text-align:left;"> 基于当前热门讨论话题:垃圾分类,课程采用学术届和工业届最新前沿技术知识要点。 </p> <p style="text-align:left;"> 实战为先 </p> <p style="text-align:left;"> 根据实际深度学习工业场景-垃圾分类,从产品需求、产品设计和方案设计、产品技术功能实现、模型上线部署。精心设计工业实战项目 </p> <p style="text-align:left;"> 保障效果 </p> <p style="text-align:left;"> 项目实战方向包含了学术届和工业届最前沿技术要点 </p> <p style="text-align:left;"> 项目包装简历优化 </p> <p style="text-align:left;"> 课程内垃圾分类图像实战项目完成后可以直接优化到简历中 </p> <p style="text-align:left;"> <strong><span style="color:#E53333;">【课程思维导图】</span></strong> </p> <p style="text-align:left;"> <img src="https://img-bss.csdn.net/201912081323318969.png" alt="" /> </p> <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <strong><span style="color:#E53333;">【课程实战案例】</span></strong> </p> <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <img src="https://img-bss.csdn.net/201912081326184463.png" alt="" /> </p> <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <br /> </p>
©️2020 CSDN 皮肤主题: 猿与汪的秘密 设计师:白松林 返回首页
实付 9.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值