【深度学习】U-Net 网络分割多分类医学图像解析

【深度学习】U-Net 网络分割多分类医学图像解析

文章目录
【深度学习】U-Net 网络分割多分类医学图像解析
1 U-Net 多分类
2 Keras 利用Unet进行多类分割
	2.1 代码实现
	2.2 结果
3 多分类标签验证
4 数据变换
	4.1 概述
	4.2 图像数据变化代码(为了满足多分类需求)
	4.3 随机亮度(为了数据增强)
5 Unet训练自己的数据

李响Superb CSDN认证博客专家 机器学习 TensorFlow 图像处理
成为一名优秀的算法工程师⬆️ ,
目前还在读软件工程,
AI攻防、算法和深度学习方向,
微博同名❤️ :李响Superb,
(记得关注,有问题微博私信!)
我们一起努力呀!
<p style="font-size:14px;background-color:#FFFFFF;color:#333333;"> <span>U-Net是一种基于深度学习图像语义分割方法,尤其在医学图像分割中表现优异。</span> </p> <p style="font-size:14px;background-color:#FFFFFF;color:#333333;"> <span>本课程将手把手地教大家使用labelme图像标注工具制作自己的数据集,生成Mask图像,并使用U-Net训练自己的数据集,从而能开展自己的图像分割应用。</span> </p> <p style="font-size:14px;background-color:#FFFFFF;color:#333333;"> <span>本课程有三个项目实践:</span> </p> <p style="font-size:14px;background-color:#FFFFFF;color:#333333;"> <span>(1) Kaggle盐体识别比赛 :利用U-Net进行Kaggle盐体识别</span> </p> <p style="font-size:14px;background-color:#FFFFFF;color:#333333;"> <span>(2) Pothole语义分割:对汽车行驶场景中的路坑进行标注和语义分割</span> </p> <p style="font-size:14px;background-color:#FFFFFF;color:#333333;"> <span>(3) Kaggle细胞核分割比赛 :利用U-Net进行Kaggle细胞核分割</span> </p> <p style="font-size:14px;background-color:#FFFFFF;color:#333333;"> <span>本课程使用keras版本的U-Net,在Ubuntu系统上用Jupyter Notebook做项目演示。 包括:数据集标注、数据集格式转换和Mask图像生成、编写U-Net程序文件、训练自己的数据集、测试训练出的网络模型、性能评估。</span> </p> <p style="font-size:14px;background-color:#FFFFFF;color:#333333;"> <span>本课程提供项目的数据集和Python程序文件。</span> </p> <p style="font-size:14px;background-color:#FFFFFF;color:#333333;"> <span><img src="https://img-bss.csdn.net/201907221510227991.jpg" alt="" /><br /> </span> </p>
相关推荐
©️2020 CSDN 皮肤主题: 猿与汪的秘密 设计师:白松林 返回首页
实付 9.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值