【深度学习】谷歌大脑EfficientNet的工作原理解析

【深度学习】谷歌大脑EfficientNet的工作原理解析

文章目录
1 知识点准备
	1.1 卷积后通道数目是怎么变多的
	1.2 EfficientNet
2 结构
	2.1 方式
	2.2 MBConv卷积块
	2.3 模型的规模和训练方式
3 对比
4 MBConv结构

1 知识点准备

1.1 卷积后通道数目是怎么变多的

为什么out_channel会大于in_channel
相信初学深度学习的小伙伴会遇到和我一样的问题,在卷积时,我们明明输入通道为 3 的图片(RGB),为什么输出通道会达到6甚至跟多呢?
下面就解释一下

首先我们假设拥有一张 3x3x3(C,H,W)的图片(方便我们处理),卷积核为2x2.如下图所示:

李响Superb CSDN认证博客专家 机器学习 TensorFlow 图像处理
成为一名优秀的算法工程师⬆️ ,
目前还在读软件工程,
AI攻防、算法和深度学习方向,
微博同名❤️ :李响Superb,
(记得关注,有问题微博私信!)
我们一起努力呀!
相关推荐
©️2020 CSDN 皮肤主题: 猿与汪的秘密 设计师:白松林 返回首页
实付 9.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值