【深度学习】nnU-Net(优秀的前处理和后处理框架)

【深度学习】nnU-Net(优秀的前处理和后处理框架)

1 概述
2 网络结构
3 training部分
	3.1 nnUNetTrainer(版本一的训练方法)
	3.2 nnUNetTrainerV2(版本二的训练方法)
4 前处理
5 自适应生成网络结构
6 模型选择
7 训练
8 后处理
9 推理
10 总结

1 概述

李响Superb CSDN认证博客专家 机器学习 TensorFlow 图像处理
成为一名优秀的算法工程师⬆️ ,
目前还在读软件工程,
AI攻防、算法和深度学习方向,
微博同名❤️ :李响Superb,
(记得关注,有问题微博私信!)
我们一起努力呀!
<p> <strong><span style="font-size:16px;color:#337FE5;"><b><a target="_blank" href="https://edu.csdn.net/bundled/detail/308"></a><a target="_blank" href="https://edu.csdn.net/bundled/detail/308"><span> </span></a></b></span></strong> </p> <p class="ql-long-39788408" style="font-size:11pt;color:#494949;"> <strong><b><strong><a class="ql-link ql-size-12 ql-author-39788408" href="https://edu.csdn.net/bundled/detail/298" target="_blank">[本课程属于AI完整学习路线套餐,该套餐已“硬核”上线,点击立即学习!]</a></strong> </b></strong> </p> <p class="ql-long-39788408" style="font-size:11pt;color:#494949;"> <br /> </p> <p> <strong><span style="font-size:16px;color:#337FE5;"><img src="https://img-bss.csdnimg.cn/202011090216454206.png" alt="" /><br /> </span></strong> </p> <p> <strong><span style="font-size:16px;color:#337FE5;"><br /> </span></strong> </p> <p> <strong><span style="font-size:16px;color:#337FE5;">【为什么要学习深度学习和计算机视觉?】</span></strong> </p> <p> <span style="font-family:"background-color:#FFFFFF;">AI人工智能现在已经成为人类发展中最火热的领域。而计算机视觉(CV)是AI中最热门,也是落地最多的一个应用方向<span style="font-family:"background-color:#FFFFFF;">(人脸识别,自动驾驶,智能安防,车牌识别,证件识别)</span>。</span><span style="font-family:"background-color:#FFFFFF;">所以基于人工智能的计算视觉行业必然会诞生大量的工作和创业的机会。如何能快速的进入CV领域,同时兼备理论基础和实战能力,就成了大多数学习者关心的事情,而这门课就是因为这个初衷而设计的。<br /> </span> </p> <p style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <br /> </p> <p style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <span style="font-size:16px;color:#337FE5;"><strong>【讲师介绍】</strong></span> </p> <p style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <span style="font-size:16px;color:#337FE5;"><strong>CH<strong><span style="font-family:"color:#222226;font-size:16px;background-color:#FFFFFF;font-weight:700;">ARLIE 老师</span></strong></strong></span> </p> 1、人工智能算法科学家<br /> 2、深圳市海外高层次人才认定(孔雀人才)<br /> 3、美国圣地亚哥国家超算中心博士后<br /> 4、加利福尼亚大学圣地亚哥全奖博士<br /> 5、参与美国自然科学基金(NSF)及加州能源局 (CEC)资助的392MW IVANPAH等智慧电网项目<br /> 6、21篇国际期刊文章(sci收录17篇),总引用接近1000<br /> 7、第一作者发明专利11份<br /> <p> <br /> </p> <p class="ql-long-24357476" style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <span style="font-family:"color:#337FE5;"><span><span style="font-size:16px;"><strong>【推荐你学习这门课的理由:</strong></span><span style="color:#E53333;font-size:16px;"><strong>知识体系完整+丰富学习资料】</strong></span></span></span> </p> <p class="ql-long-24357476" style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <span class="ql-author-24357476" style="font-family:""></span> </p> <p class="MsoNormal" style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> 1、本课程总计9大章节,是一门系统入门计算机视觉的课程,未来将持续更新。 </p> <p class="MsoNormal" style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <span>2</span>、<span>课程从计算机视觉理论知识出发,理论结合实战,手把手的实战代码实现(霍夫变换与模板匹配,</span><span>AlexNet OCR</span><span>应用</span><span>,VGG</span><span>迁移学习,多标签分类算法工程)</span> </p> <p class="MsoNormal" style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <span>3</span>、<span>带你了解最沿技术,</span><span>各类型算法的优点和缺点,掌握数据增强,</span><span>Batchnormalization, Dropout</span><span>,迁移学习等优化技巧,搭建实用的深度学习应用模型</span> </p> <p class="MsoNormal" style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <span>4</span>、学习完后,你将具有深度学习与计算视觉的项目能力,比如大学生学完可以具备独立完成机器视觉类毕业设计的能力,在求职过程中可以体系化的讲解机器视觉核心知识点,初步达到人工智能领域机器视觉工程师的水平 </p> <span style="color:#222226;font-family:PingFangSC-Regular, "font-size:14px;background-color:#FFFFFF;"></span> <p style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <br /> </p> <p class="ql-long-24357476" style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <strong><span style="color:#337FE5;font-size:16px;">【学完后我将达到什么水平?】</span></strong> </p> <p class="ql-long-24357476"> <span>1、<span style="font-family:"">零基础入门计算视觉,学习掌握并应用从经典图像处理深度学习分类任务的要点知识</span></span> </p> <p class="ql-long-24357476"> <span>2、<span style="font-family:"">掌握数据增强,迁移学习等优化技巧,搭建实用的深度学习应用模型</span></span> </p> <p class="ql-long-24357476"> <span>3、<span style="font-family:"">学习完课程,可以独立应用多个经典算法和深度学习算法</span></span> </p> <p class="ql-long-24357476"> <span>4、<span style="font-family:"">以</span><span style="font-family:"">大学毕业设计,面试找工作为目标,</span><span style="font-family:"">手把手带大家编程,即使没有太多计算视觉的背景知识也可以循序渐进完成课程,获得实战项目的经验</span></span> </p> <p class="ql-long-24357476"> <br /> </p> <p class="ql-long-24357476"> <span style="color:#337FE5;"><b><span style="background-color:#FFFFFF;color:#337FE5;"><span style="font-size:16px;color:#337FE5;">【面向人群】</span></span></b></span> </p> <p class="ql-long-24357476"> <span>1、对AI感兴趣,想要系统学习计算机视觉的学员</span> </p> <p class="ql-long-24357476"> <span>2、<span style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;">需要毕业设计的大学生</span></span> </p> <p class="ql-long-24357476"> <span>3、<span style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;">做图像分析或相关数据分析的研究生</span></span> </p> <p class="ql-long-24357476"> <span>4、<span style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;">准备面试计算视觉和深度学习岗位的应聘者</span></span> </p> <p class="ql-long-24357476"> <span>5、<span style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;">希望在项目中引入计算视觉</span><span style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;">/</span><span style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;">深度学习技术的开发人员</span></span> </p> <p class="ql-long-24357476"> <br /> </p> <p class="ql-long-24357476"> <b><span style="font-family:"font-size:16px;background-color:#FFFFFF;color:#337FE5;"><span style="font-size:16px;color:#337FE5;">【课程知识体系图</span><span style="font-size:16px;color:#337FE5;">】</span></span></b> </p> <p class="ql-long-24357476"> <span><b><img src="https://img-bss.csdnimg.cn/202007140746422581.png" alt="" /></b></span> </p> <p class="ql-long-24357476"> <span><b><br /> </b></span> </p> <p class="ql-long-24357476"> <span style="font-size:16px;color:#337FE5;"><b>【实战项目】</b></span> </p> <p class="ql-long-24357476"> <b><img src="https://img-bss.csdnimg.cn/202007150352244062.png" alt="" /><img src="https://img-bss.csdnimg.cn/202007150517376530.png" alt="" /></b> </p> <p class="ql-long-24357476"> <br /> </p>
相关推荐
<p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <span style="color:#E53333;"><strong>【课程介绍】</strong></span>  </p> <p style="text-align:left;">      Pytorch项目实战 垃圾分类 课程从实战的角度出发,基于真实数据集与实际业务需求,结合当下最新话题-垃圾分类问题为实际业务出发点,介绍最沿的深度学习解决方案。 </p> <p style="text-align:left;">     从0到1讲解如何场景业务分析、进行数据处理,模型训练与调优,最后进行测试与结果展示分析。全程实战操作,以最接地气的方式详解每一步流程与解决方案。 </p> <p style="text-align:left;">     课程结合当下深度学习热门领域,尤其是基于facebook 开源分类神器ResNext101网络架构,对网络架构进行调整,以计算机视觉为核心讲解各大网络的应用于实战方法,适合快速入门与进阶提升。 </p> <p style="text-align:left;"> <strong><span style="color:#E53333;">【课程要求】</span></strong> </p> <p style="text-align:left;"> (1)开发环境:python版本:Python3.7+;<span style="color:#E53333;"> torch 版本:1.2.0+; torchvision版本:0.4.0+</span> </p> <p style="text-align:left;"> (2)开发工具:Pycharm; </p> <p style="text-align:left;"> (3)学员基础:需要一定的Python基础,及深度学习基础; </p> <p style="text-align:left;"> (4)学员收货:掌握最新科技图像分类关键技术; </p> <p style="text-align:left;"> (5)学员资料:内含完整程序源码和数据集; </p> <p style="text-align:left;"> (6)课程亮点:专题技术,完整案例,全程实战操作,徒手撸代码 </p> <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <span style="color:#E53333;"><strong>【课程特色】</strong></span> </p> 阵容强大 <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> 讲师一直从事与一线项目开发,高级算法专家,一直从事于图像、NLP、个性化推荐系统热门技术领域。 </p> <p style="text-align:left;"> 仅跟沿 </p> <p style="text-align:left;"> 基于当热门讨论话题:垃圾分类,课程采用学术届和工业届最新沿技术知识要点。 </p> <p style="text-align:left;"> 实战为先 </p> <p style="text-align:left;"> 根据实际深度学习工业场景-垃圾分类,从产品需求、产品设计和方案设计、产品技术功能实现、模型上线部署。精心设计工业实战项目 </p> <p style="text-align:left;"> 保障效果 </p> <p style="text-align:left;"> 项目实战方向包含了学术届和工业届最沿技术要点 </p> <p style="text-align:left;"> 项目包装简历优化 </p> <p style="text-align:left;"> 课程内垃圾分类图像实战项目完成后可以直接优化到简历中 </p> <p style="text-align:left;"> <strong><span style="color:#E53333;">【课程思维导图】</span></strong> </p> <p style="text-align:left;"> <img src="https://img-bss.csdn.net/201912081323318969.png" alt="" /> </p> <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <strong><span style="color:#E53333;">【课程实战案例】</span></strong> </p> <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <img src="https://img-bss.csdn.net/201912081326184463.png" alt="" /> </p> <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <br /> </p>
<p style="font-size:16px;"> 本课程适合具有一定深度学习基础,希望发展为深度学习之计算机视觉方向的算法工程师和研发人员的同学们。<br /> <br /> 基于深度学习的计算机视觉是目人工智能最活跃的领域,应用非常广泛,如人脸识别和无人驾驶中的机器视觉等。该领域的发展日新月异,网络模型和算法层出不穷。如何快速入门并达到可以从事研发的高度对新手和中级水平的学生而言面临不少的挑战。精心准备的本课程希望帮助大家尽快掌握基于深度学习的计算机视觉的基本原理、核心算法和当的领先技术,从而有望成为深度学习之计算机视觉方向的算法工程师和研发人员。<br /> <br /> 本课程系统全面地讲述基于深度学习的计算机视觉技术的原理并进行项目实践。课程涵盖计算机视觉的七大任务,包括图像分类、目标检测、图像分割(语义分割、实例分割、全景分割)、人脸识别、图像描述、图像检索、图像生成(利用生成对抗网络)。本课程注重原理和实践相结合,逐篇深入解读经典和沿论文70余篇,图文并茂破译算法难点, 使用思维导图梳理技术要点。项目实践使用Keras框架(后端为Tensorflow),学员可快速上手。<br /> <br /> 通过本课程的学习,学员可把握基于深度学习的计算机视觉的技术发展脉络,掌握相关技术原理和算法,有助于开展该领域的研究与开发实战工作。另外,深度学习之计算机视觉方向的知识结构及学习建议请参见本人CSDN博客。<br /> <br /> 本课程提供课程资料的课件PPT(pdf格式)和项目实践代码,方便学员学习和复习。<br /> <br /> 本课程分为上下两部分,其中上部包含课程的五章(课程介绍、深度学习基础、图像分类、目标检测、图像分割),下部包含课程的后四章(人脸识别、图像描述、图像检索、图像生成)。 </p> <div> <br /> </div> <p> <br /> </p> <p> <br /> </p> <p style="font-size:16px;"> <br /> </p> <p style="font-size:16px;"> <img src="https://img-bss.csdn.net/201902211157137641.jpg" alt="" /><img src="https://img-bss.csdn.net/201902211157578041.gif" alt="" /><img src="https://img-bss.csdn.net/201902211158173579.gif" alt="" /><img src="https://img-bss.csdn.net/201902211158498135.gif" alt="" /><img src="https://img-bss.csdn.net/201902211159093293.gif" alt="" /><img src="https://img-bss.csdn.net/201902211159209625.gif" alt="" /> </p> <p style="font-size:16px;"> <br /> </p>
<p style="font-size:16px;"> 本课程适合具有一定深度学习基础,希望发展为深度学习之计算机视觉方向的算法工程师和研发人员的同学们。<br /> <br /> 基于深度学习的计算机视觉是目人工智能最活跃的领域,应用非常广泛,如人脸识别和无人驾驶中的机器视觉等。该领域的发展日新月异,网络模型和算法层出不穷。如何快速入门并达到可以从事研发的高度对新手和中级水平的学生而言面临不少的挑战。精心准备的本课程希望帮助大家尽快掌握基于深度学习的计算机视觉的基本原理、核心算法和当的领先技术,从而有望成为深度学习之计算机视觉方向的算法工程师和研发人员。<br /> <br /> 本课程系统全面地讲述基于深度学习的计算机视觉技术的原理并进行项目实践。课程涵盖计算机视觉的七大任务,包括图像分类、目标检测、图像分割(语义分割、实例分割、全景分割)、人脸识别、图像描述、图像检索、图像生成(利用生成对抗网络)。本课程注重原理和实践相结合,逐篇深入解读经典和沿论文70余篇,图文并茂破译算法难点, 使用思维导图梳理技术要点。项目实践使用Keras框架(后端为Tensorflow),学员可快速上手。<br /> <br /> 通过本课程的学习,学员可把握基于深度学习的计算机视觉的技术发展脉络,掌握相关技术原理和算法,有助于开展该领域的研究与开发实战工作。另外,深度学习之计算机视觉方向的知识结构及学习建议请参见本人CSDN博客。<br /> <br /> 本课程提供课程资料的课件PPT(pdf格式)和项目实践代码,方便学员学习和复习。<br /> <br /> 本课程分为上下两部分,其中上部包含课程的五章(课程介绍、深度学习基础、图像分类、目标检测、图像分割),下部包含课程的后四章(人脸识别、图像描述、图像检索、图像生成)。 </p> <p style="font-size:16px;"> <br /> </p> <p style="font-size:16px;"> <img src="https://img-bss.csdn.net/201902221256508000.gif" alt="" /><img src="https://img-bss.csdn.net/201902221257045928.gif" alt="" /><img src="https://img-bss.csdn.net/201902221257156312.gif" alt="" /><img src="https://img-bss.csdn.net/201902221257252319.gif" alt="" /> </p>
<p style="font-size:medium;"> <span style="font-size:18px;color:#FF0000;">课程目标</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">学习完本门课程,您将对自然语言处理技术有更深入的了解, </span><span style="font-size:18px;">掌握基于深度学习情感分析方法;课程基于</span><span style="font-size:18px;">PyTorch</span><span style="font-size:18px;">主流框架实现,其中涉及深度学习主流框架</span><span style="font-size:18px;">LSTM</span><span style="font-size:18px;">模型以及自然语言处理的词向量;</span><span style="font-size:18px;">彻底掌握</span><span style="font-size:18px;">中文情感分析。</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;color:#FF0000;">适用人群</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">想要从事NLP的在校学生、NLP研发工程师</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">自然语言处理从业者、深度学习爱好者</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;color:#FF0000;">课程简介</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">NLP领域的热门应用,常用在舆情分析,文章分类,智能</span><span style="font-size:18px;">客服,情感分析等</span><span style="font-size:18px;">多个场景</span><span style="font-size:18px;">。情感分析作为</span><span style="font-size:18px;">自然语言处理的基础技术之一</span><span style="font-size:18px;">,常被用于电商评论、舆情监控、</span><span style="font-size:18px;color:#FF0000;">微博评论情感分析</span><span style="font-size:18px;">、话题监督等领域,</span><span style="font-size:18px;">因此深入</span><span style="font-size:18px;">掌握情感分析技术</span><span style="font-size:18px;">,是作为自然语言处理从</span><span style="font-size:18px;">业者必备技能</span><span style="font-size:18px;">,本课程以案例驱动出发,结合多个项目实战案例,覆盖多种算法,</span><span style="font-size:18px;">如</span><span style="font-size:18px;">RNN</span><span style="font-size:18px;">,</span><span style="font-size:18px;">LSTM</span><span style="font-size:18px;">等</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;color:#FF0000;">课程要求:</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">(1)开发环境:python版本:Python3.7; </span><span style="font-size:18px;color:#FF0000;">torch 版本:</span><span style="font-size:18px;color:#FF0000;">1.</span><span style="font-size:18px;color:#FF0000;">3</span><span style="font-size:18px;color:#FF0000;">.0+; torch</span><span style="font-size:18px;color:#FF0000;">text</span><span style="font-size:18px;color:#FF0000;">版本</span><span style="font-size:18px;color:#FF0000;">:</span><span style="font-size:18px;color:#FF0000;">0.</span><span style="font-size:18px;color:#FF0000;">3</span><span style="font-size:18px;color:#FF0000;">.0</span><span style="font-size:18px;color:#FF0000;">+</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">(2)开发工具:Pycharm;</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">(3)学员基础:需要一定的Python基础,及深度学习基础;</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">(4)学员收货:</span><span style="font-size:18px;">掌握深度学习情感分类关键</span><span style="font-size:18px;">技术;</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">(5)学员资料:内含完整程序源码和数据集;</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">(6)课程亮点:专题技术,完整案例,全程实战操作,徒手撸代码。</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;"><br /></span> </p> <p style="text-align:center;font-size:medium;"> <span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002100142351682.png" alt="" /><br /></span> </p> <p style="text-align:center;font-size:medium;"> <span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002100143361272.png" alt="" /><br /></span> </p> <p style="text-align:center;font-size:medium;"> <span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002100144109896.png" alt="" /><br /></span> </p> <p style="text-align:center;font-size:medium;"> <span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002100144545929.png" alt="" /><br /></span> </p> <p style="text-align:left;font-size:medium;"> <span style="font-size:32px;">案例5-情感分析功能点</span> </p> <p style="text-align:center;font-size:medium;"> <img src="https://img-bss.csdn.net/202002131018235991.png" alt="" /></p> <p style="text-align:center;font-size:medium;"> <br /></p> <p style="text-align:center;font-size:medium;"> <span style="font-size:18px;"><br /></span> </p> <p style="text-align:center;font-size:medium;"> <span style="font-size:18px;"><br /></span> </p> <p style="text-align:center;font-size:medium;"> <span style="font-size:18px;"><br /></span> </p>
©️2020 CSDN 皮肤主题: 猿与汪的秘密 设计师:白松林 返回首页
实付 9.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值