【深度学习】像素级分割网络新思路之DeepLabv3+

【深度学习】像素级分割网络新思路之DeepLabv3+

1 版本情况
2 引言&相关工作
3 空洞卷积(Dilated/Atrous Convolution)
4 DeepLabv3+
5 深度可分离卷积(Depthwise separable convolution)
	5.1 逐通道卷积(Depthwise Convolution)
	5.2 逐点卷积(Pointwise Convolution)
6 实验(Miou)

1 版本情况

这是在DeepLabV1、2基础上的再扩展;
V1 主要是将VGG最后两个的池化改成了stride=1,然后采用了空洞卷积来扩大感受野,上采样使用了双线性插值;

V2主要是在模型最后进行像素分类之前增加一个类似 Inception 的结构,即ASPP模块,通过不同rate得到不

李响Superb CSDN认证博客专家 机器学习 TensorFlow 图像处理
成为一名优秀的算法工程师⬆️ ,
目前还在读软件工程,
AI攻防、算法和深度学习方向,
微博同名❤️ :李响Superb,
(记得关注,有问题微博私信!)
我们一起努力呀!
<p style="font-size:16px;"> 本课程适合具有一定深度学习基础,希望发展为深度学习之计算机视觉方向的算法工程师和研发人员的同学们。<br /> <br /> 基于深度学习的计算机视觉是目前人工智能最活跃的领域,应用非常广泛,如人脸识别和无人驾驶中的机器视觉等。该领域的发展日新月异,网络模型和算法层出不穷。如何快速入门并达到可以从事研发的高度对新手和中级水平的学生而言面临不少的挑战。精心准备的本课程希望帮助大家尽快掌握基于深度学习的计算机视觉的基本原理、核心算法和当前的领先技术,从而有望成为深度学习之计算机视觉方向的算法工程师和研发人员。<br /> <br /> 本课程系统全面地讲述基于深度学习的计算机视觉技术的原理并进行项目实践。课程涵盖计算机视觉的七大任务,包括图像分类、目标检测、图像分割(语义分割、实例分割、全景分割)、人脸识别、图像描述、图像检索、图像生成(利用生成对抗网络)。本课程注重原理和实践相结合,逐篇深入解读经典和前沿论文70余篇,图文并茂破译算法难点, 使用思维导图梳理技术要点。项目实践使用Keras框架(后端为Tensorflow),学员可快速上手。<br /> <br /> 通过本课程的学习,学员可把握基于深度学习的计算机视觉的技术发展脉络,掌握相关技术原理和算法,有助于开展该领域的研究与开发实战工作。另外,深度学习之计算机视觉方向的知识结构及学习建议请参见本人CSDN博客。<br /> <br /> 本课程提供课程资料的课件PPT(pdf格式)和项目实践代码,方便学员学习和复习。<br /> <br /> 本课程分为上下两部分,其中上部包含课程的前五章(课程介绍、深度学习基础、图像分类、目标检测、图像分割),下部包含课程的后四章(人脸识别、图像描述、图像检索、图像生成)。 </p> <div> <br /> </div> <p> <br /> </p> <p> <br /> </p> <p style="font-size:16px;"> <br /> </p> <p style="font-size:16px;"> <img src="https://img-bss.csdn.net/201902211157137641.jpg" alt="" /><img src="https://img-bss.csdn.net/201902211157578041.gif" alt="" /><img src="https://img-bss.csdn.net/201902211158173579.gif" alt="" /><img src="https://img-bss.csdn.net/201902211158498135.gif" alt="" /><img src="https://img-bss.csdn.net/201902211159093293.gif" alt="" /><img src="https://img-bss.csdn.net/201902211159209625.gif" alt="" /> </p> <p style="font-size:16px;"> <br /> </p>
相关推荐
©️2020 CSDN 皮肤主题: 猿与汪的秘密 设计师:白松林 返回首页
实付 9.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值