【深度学习】Keras实现回归和二分类问题讲解

【深度学习】Keras实现回归和二分类问题讲解

文章目录
【深度学习】Keras实现回归和二分类问题讲解
1 回归问题
	1.1 波士顿房价预测数据集
	1.2 构建基准模型
	1.3 数据预处理
	1.4 超参数
2 二分类
	2.1 银行营销分类数据集
	2.2 预处理
	2.3 构建基准模型
	2.4 数据格式化
	2.5 优化网络图

1 回归问题

1.1 波士顿房价预测数据集

波士顿房价预测是一个较为简单的数据回归问题,通过对已有数据的模拟,从而预测其他房子的房价。
波士顿房产数据集:使用sklearn.datasets.load_boston即可加载相关数据。该数据集共有 506 个观察,13 个输入变量和1个输出变量。
基于该数据对波士顿房产数据集做最简单的线性回归。

import pandas as pd
import warnings
warnings.
李响Superb CSDN认证博客专家 机器学习 TensorFlow 图像处理
成为一名优秀的算法工程师⬆️ ,
目前还在读软件工程,
AI攻防、算法和深度学习方向,
微博同名❤️ :李响Superb,
(记得关注,有问题微博私信!)
我们一起努力呀!
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 猿与汪的秘密 设计师:白松林 返回首页
实付 9.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值