机器学习之交叉验证方法详解【基于Scikit-Learn】

目录:
1 为什么交叉验证
2 交叉验证方法
	2.1 简单的交叉验证
	2.2 k折交叉验证 k-fold cross validation
	2.3 代码
3 留一法 leave-one-out cross validation
	3.1 测试代码
	3.2 输出结果

1 为什么交叉验证

在机器学习与数据挖掘中进行模型验证的一个重要目的是要选出一个最合适的模型。对于有监督学习而言,我们希望模型对于未知数据具有很强的泛化能力,所以就需要模型验证这一过程来评估不同的模型对于未知数据的表现效果。

最先我们用训练准确度(用全部数据进行训练和测试)来衡量模型的效果,这种方法容易导致模型过拟合。最初,为了解决这个问题,我们将所有数据分成两部分:训练集 和 测试集。我们用训练集进行模型训练,得到的模型再用测试集来衡量模型的预测表现能力,这种度量方式叫测试准确度,这种方式可以有效避免过拟合。
  
  测试准确度的一个缺点是其样本准确度是一个高方差估计&#x

李响Superb CSDN认证博客专家 机器学习 TensorFlow 图像处理
成为一名优秀的算法工程师⬆️ ,
目前还在读软件工程,
AI攻防、算法和深度学习方向,
微博同名❤️ :李响Superb,
(记得关注,有问题微博私信!)
我们一起努力呀!
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 猿与汪的秘密 设计师:白松林 返回首页
实付 9.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值