一种医学图像分割的新思路【nnU-Net网络配置教程】

目录:
1 nnU-Net论文解析
2 环境配置——pytorch教程
2.1 使用学院的CUDA9.0进行编译
2.1.2 对虚拟环境的创建
2.1.2 编译GCC5.4
2.1.3 编译pytorch1.5(CUDA9.0支持的最高版本)
2.1.4 安装nnUNet
2.1.5 配置nnunet
2.2 更改CUDA版本

1 nnU-Net论文解析

请先阅读:

1.详细解释
2.2D和3DUnet辨析
nnUnet虽然不是新的论文,但是这个框架效果很好。它并没有提出新的网络结构,没有抓人眼球的地方,仅依靠一些技巧,将分割任务进行了大统一,并在很多任务上得到了非常好的成绩上,可以看出作者的功底之深。
对于分割任务,从unet出来之后的几年里,其实在网络结构上已经没有多少的突破了,结构修改越多,反而越容易过拟合。因此作者认为更多的提升其实在于理解数据,并针对医学数据采用适当的预处理和训练方法。

2 环境配置——pytorch教程

经过半个月的折腾,我大致总结出两个办法:1、使用学院服务器集群module管理器的CUDA9.0对pytorch源码进行编译(缺点:最高只能到pytorch1.5,py

李响Superb CSDN认证博客专家 机器学习 TensorFlow 图像处理
成为一名优秀的算法工程师⬆️ ,
目前还在读软件工程,
AI攻防、算法和深度学习方向,
微博同名❤️ :李响Superb,
(记得关注,有问题微博私信!)
我们一起努力呀!
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 猿与汪的秘密 设计师:白松林 返回首页
实付 9.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值